
r -

m

m

= =

= =

m

u

'zi3,_

p. ¢/

ART-Ada Design Project- Phase I!
Final Report

_0

eO,,l'"

t,W u_
O, _0 :
Z _0

0 --_
hi,.

I,-- 0 ..J .--_
C,J_.- C.)

aE
E

Z

W

,_

O

oc_4J

o_ ,-- CL

_0¢ O
P-I,. L_

ILL
¢Y 13

_LU E:
_q u3 _0

S. Danial Lee

Bradley P. Allen

Inference Corpor-ation

February 1990

Cooperative Agreement NCC 9-16
Research Activity No. SE,19

NASA Johnson Space Center
Information Systems Directorate

Information Technology Division

© ©

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

T.E.C.H.N.I.C.A.L R.E.P.O.R.T

w

J
all

I

J

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space .----_ !
Center and local industry to actively support research in the computing and _:i
information sciences. As part of this endeavor, UH-Clear Lake proposed a qP
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including
administrative, engineering and science respons_illties. JSC agreed and enter_ into ___ i
a three-year cooperative agreement with UH-Ciear Lake beginning in May, 1986, to =¢
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared _:_ !
by the two institutions toconduct the :r_ich. _.... _a

The mission of RICIS is to conduct, coordinate and disseminate research on I_

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake,....... the mission is being implemented through interdisciplinary involvement of _ !
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concepL UH-Clear

Lake establishes relationships with other universities and research organizations, _
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and _
research_objectlves to advance knowledge in the computing and informatiOn _ !
sciences. Working jointly with NASA/JSC, RICiS advises on research needs, iil

recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results _
into the cooperative goals of UH-Clear Lake and NASA/JSC. J

m

=

- =

w

Bw

m

ART/Ada Design Project- Phase II
Final Report

m
w

w

_ r

m

u

m

m

m

m

i

m

I

_m
I

m

b

m
m

i

I
m

m

m

m

m

m

g

m

g

D

)
I

m

mm

m i

gl

w

Preface

w

w

K .

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Inference Corporation. Dr. Charles McKay
served as RICIS research coordinator.

Funding has been provided by the Information Systems Directorate, NASA/JSC

through Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and

the University of Houston-Clear Lake. The NASA technical monitor for this activity was

Robert T. Savely, of the Software Technology Branch, Information Technology Division,

Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

=

w

w

z

w

w

w

i

m

E

g

z
m

l

.m

R

!

m

m

m

i

m

a!

w

E
J

J
l !m

|

m

J

mi

|
!

i i

J_
!

w

w

L i

w

w

,w--

w

w

ART-Ada Design Project - Phase II

Final Report

Subcontract 015

RICIS Research Activity SE.19

NASA Cooperative Agreement NCC-9-16

S. Daniel Lee

Bradley P. Allen

Inference Corporation

February 1990

w

m

W

w

Copyright (_) 1990 Inference Corporation

r_
w

m

I

m

gr

gm

m

ui

f
I
lm

I

i

J

g

mm

RB

II

!
m

m

I

II

i

ID

!m

u

i

m_m _

m

m i
I i

g i
J

i i

Z .

i |

i
mm_ __--

g

_J

J _

z z

=

_=

!

m

w

w

.adRT-AI)A DESIGN PROJECT - PHASE II

Table of Contents

1. Introduction

1.1 Motivation

1.2 Project Background and Status

1.3 Approach

2. ART-Ada: An Ada-based Expert System Tool

2.1 Overall Architecture

2.2 Knowledge Representation

2.3 Knowledge Base Debugging

2.4 Ada Integration

2.5 Ada Code Generation

2.6 Ada Runtime Deployment

2.7 Performance Benchmarks

2.7.1 Simple Constant Attributes

2.7.2 Simple Patterns with Co-occurring Variables

2.7.3 Objects with Co-occurring Variables

3. Discussion

3.1 Ada Issues

3.1.1 Compiler Problems

3.1.2 Dynamic Memory Allocation

3.1.3 Other Language Issues Related to ART-Ada Performance

3.1.4 Portability

3.2 Hardware Issues

4. Related Work

5. Future Directions

References

I. Beta Test Sites and Contacts

1.1 NASA Sites

1.2 US,_v Sites

FINM. REPORT

2

,)

,)

3

5

5

5

9

10

12

13

14

15

15

16

18

18

18

19

24

25

26

28

30

32

34

34

34

i

l

.\RT-ADA DESIGN PROJECT - PHASE [I FINAL REPOt2T

Figure 2-1:

List of Figures

Overall Architecture of AJ::tT-Ada

ii

5

m

m
i

m

i
I
m

m

m
!

!

u

m

I!

m

mm
!

il

|
m

II

II'

B

ill

--!!

w!

._RT-ADA DESIGN PROJECT - PH__SE II FIN.-kL REPORT

--z

w

= =

List of Tables

Table 2-1:

Table 3-1:

Table 3-2:

Data Types for Ada CMl-in/Call-out

Overhead of Dynamic NIemory Allocation using new in Ada

Overhead of Dynamic NIemory Allocation using malloc in C

l'2

21

21

U

W

Ii

m

°,l

111 '

._RT-ADA DESIGN PROJECT - Pt-L_SE II FINAL REPORT

Abstract

Interest in deploying expert systems in Ada has increased. This report describes an

Ada-based expert system tool called .-kRT-Ada, which was built to support research into

the language and methodological issues of expert systems in Ada. ,4aRT-Ada allows ap-

plications of an existing expert system tool called ART-IM (Automated Reasoning Tool

for Information Management) to be deployed in various Ada environments. ART-IM, a

C-based expert system tool, is used to generate Ada source code which is compiled and

linked with an Ada-based inference engine to produce an Ada executable image. The

future research directions call for improved support for real-time embedded and dis-

tributed expert systems. A.RT-Ada is being used to implement several expert systems

for NASA's Space Station Freedom Program and the U.S. Air Force.

I

iW

m

m

l

!

!

I

m

m

i

m

J

J

m

m

ip

m

J

w

.-LRT-._DA DESIGN PRO IECT - PFL_.SEI[FINAL P_EPC_RT

=

h__

v

w

m
W

V

'qB

w

l

1. Introduction

1.1 Motivation

The Department of Defense mandate to standardize on Ada as the language for

software systems development has resulted in increased interest from developers of

large-scale Ada systems in making expert systems technology readily available in .-\da

environments. Two examples of Ada applications that can benefit from the use of ex-

pert systems are monitoring and control systems and decision support systems.._[onitor-

ing and control systems demand real-time performance, small execution images, tight

integration with other applications, and predictable demands on processor resources;

decision support systems have somewhat less stringent requirements.

An example project that exhibits the need for both of these types of systems is

NASA's Space Station Freedom. Monitoring and control systems that wilt perform

fault detection, isolation and reconfiguration for various on-board systems are expected

to be developed and deployed on the station either in its initial operating configuration

or as the station evolves; decision support systems that will provide assistance in ac-

tivities such as crew-time scheduling and failure mode analysis are also under considera-

tion. These systems will be expected to run reliably on a standard data processor, cur-

rently envisioned to be an 80386-based workstation. The Station is typical of the large

Ada software development projects that will require expert systems in the 1990's.

Another large-scale application that can benefit from Ada-based expert system tool

technology is the Pilot's Associate (PA) expert system project for military combat

aircraft [13]. Funded by the Defense Advanced Research Projects Agency (DARPA) as

part of its Strategic Computing Program, the PA project attempts to automate the

cockpit of military combat aircraft using Artificial Intelligence (AI) techniques. A Lisp-

based expert system tool, ART (Automated Reasoning Tool), was used to implement

one of the two prototypes built during Phase I. An Ada-based expert system tool can

provide a migration path to deploy the prototype on an on-board computer because

Ada cross-compilers are readily available to run Ada programs on most embedded

processors used for avionics.

1.2 Project Background and Status

Inference has been involved with Ada-based expert systems research since 1986. Initial

work centered around a specification for an Ada-based expert system tool. The result

of this research activity is summarized in [15]. In 1988, the ART-Ada Design Project

was initiated to design and implement an Ada-based expert system tool. At the end of

Phase I of this project, a working prototype was successfully demonstrated. This

research activity is reported in [17] and [22]. In 1989, during the ART-Ada Design

Project - Phase II, the Phase I prototype was extended and refined so that it could be

._RT-M)ADESIGNPROJECT- PHASEII FIN X_LREPORT

released to beta sites. At the end of 1989, At_T-Ada was released to beta sites as ART-

Ada 2.0 Beta on the VAX/¥.%IS and Sun/Unix platforms [181. In 1990, eight beta sites.

four NASA sites and four Air Force sites, will be evaluating ART-Ada 2.0 for eight

months by developing expert systems and deploying them in Ada environments.

The objectives of the .kRT-Ada Design Project were two fold:

1. to determine the feasibility of providing a hybrid expert system tool such _s

ART in Ada, and

2. to develop a strategy for Ada integration and deployment of such a tool.

Both of these objectives were met successfully when ART-Ada 2.0 beta was released to

the beta sites. Ada compiler problems and Ada language issues encountered during this

project are documented in this report. During the evaluation period, the following ob-

jectives will be important:

1. to evaluate any bugs or performance problems, and

2. to determine any issues related to particular embedded system environments.

,m

i

g

l,

l

m

I

m

1.3 Approach

Inference Corporation developed an expert system tool called ART (Automated

Reasoning Tool) that has been commercially available for several years [16]. ART is

written in Common Lisp and it supports various reasoning facilities such as rules, ob-

jects, truth maintenance, hypothetical reasoning and object-oriented programming. In

1988, Inference introduced another expert system tool called ART-IM (Automated

Reasoning Tool for Information Management), which is also commercially available [19 I.

3aRT-IM is written in C and it supports a major subset of ART's reasoning facilities in-

eluding rules, objects, truth maintenance and object-oriented programming. ART-IM

consistsof

* a runtime kernel,

• a C deployment compiler, and

• an interactive development environment.

ART-IM's kernel supports the following features:

• a forward-chaining production rule system based on the Rete algorithm [9],

• an object system,

I

__J

Ill

m

I

m
n

J

3
m
m

g

,L.._
ART-,_d)A DESIGN PROJECT - PI-L_.SE II FINAL REPORT

--4

L

--=

m.

• object-oriented programming,

• a justification-based truth maintenance system (JT._[S), and

• explanation generation utilities.

ART-IM supports deployment of applications in C using a C deployment compiler

that converts an application into C data structure ,lefinitions in the form of either C

source code or object code. ART-IM's interactive development environment includes a

graphical user interface that allows browsing and debugging of the knowledge base and

an integrated editor that offers incremental compilation. ,M_T-IM is available for .kl%_S,

%.'MS, Unix, MS-DOS, and OS/2 environments.

Our approach in designing an Ada-based expert system tool was to use the architec-

ture of proven expert system tools: A_RT and .M_T-IM. Both ART and ART-IM have

been successfully used to develop many applications which are in daily use

today [7], [23], [24]. ART-IM was selected as a baseline system because C is much closer

to Ada. While ART-IM's inference engine was reimplemented in Ada, ART-IM's front-

end (its parser/analy_er and graphical user interface) was reused as the ART-Ada

development environment,. The ART-IM kernel was enhanced to generate Ada source

code that would be used to initialize Ada data structures equivalent, to ART-IM's inter-

nal C data structures, and also to interface with user-written Ada code. This approach

allows the user to take full advantage of the interactive development, environment

developed originally for ART-IM. Once the development is complete, the application is

automatically converted to Ada source code. It is, then, compiled and linked with the

Ada runtime kernel, which is an Ada-based inference engine.

m

m

m

4

ART-ADA DESIGN PROJECT - PI-L_SE II FINAJ. REPORT ,

2. ART-Ada: An Ada-basecl Expert System

Tool

2.1 Overall Architecture

ART-Ada is desioned_ to be used by knowledge engineers who may not be familiar

with Ada. With minimum knowledge about Ada, they can still develop a knowle(tge
base in a high-level language whose syntax :most resembles that of Common Lisp. When i

the knowledge base is completed, Ada source code can be generated automatically bv

simply "pressing a button". '
iii

When this automatically generated Ada code is compiled and linked with the Ada

library of the A_RT-Ada runtime kernel, an Ada executable image is produced. A_RT-

Ada also provides extensive capabilities for Ada integration so that the knowledge base

can be embedded in an Ada environment. It would be best if the knowledge engineer

developing the knowledge base works with an Ada programmer who serves as a system

integrator. ART-Ada would be most useful for those who must deploy in Ada environ-

ments (because of the Ada mandate) expert system applications already developed using

tools that do not support Ada deployment.

=

/ A--Ilcetlon • Executable
/ ART/Ada _'_'"- f Ade Application g
P/_Development ...AOa,. / Compilation

, I_nvlronment r'"'v"/ System

ART/Ada
Runtime
Kernel

Figure 2-1: Overall Architecture of ART-Ada

m_

i
!

g

m
!

!

U

%._.-

ART-ADA DESIGN PROJECT - PHASE II FI.N.\L REPORT

The overall architecture of ART-Adais depicted in figure 2-1. The knowledge base is

developed and debugged using an interactive user interface that supports three main

features; a command loop similar to the Lisp eval loop. a graphical user interface for

knowledge base browsing and debugging, and an integrated editor for incremental com-

pilation of the knowledge base. Any user-written Ada code can be integrated into the

knowledge base by either calling it from a rule or invoking it :_s a method for object-

oriented programming.

w

L_

i

m

=
U

I

!

m

!P

N

NG_

Once the knowledge base is fully debugged, it can be automatically converted into an

Ada package for deployment. The ART-Ada runtime kernel is an Ada library, which is

in essence an Ada-b_ed inference engine. An Ada executable image is produced when

the machine-generated Ada code and any user-written Ada code, if any, are compiled

and linked with the Ada library.

2.2 Knowledge Representation

A_RT-Ada's key feature is the integration of rule-based representation and object-

based (frame-based) representation. It supports three different programming

methodologies:

Rule-based Programming -- Rules opportunistically react to changes in the

surrounding database. Rules can fire (execute) in an order based largely on

the dynamic ordering of those changes. Rules cannot call other rules, and

hence must communicate indirectly by making changes to the database

which will, in turn, stimulate other rules.

Object-Oriented Programming -- The fundamental unit of ._RT-Ada's

object-oriented programming is the object, represented by a schema. Con-

trol is managed by sending messages to objects (schemas). The object reacts

to the message by searching within itself for a method appropriate to that

message. If an object does not have a method for the received message, it

searches to see if it has inherited any appropriate methods from its parents.

Once a method has been found, the object carries out the actions associated

with the method.

• Procedural Programming -- ART-Ada's procedural language supports func-

tion calling, iteration (for, while) and conditionals (if, and, not). There are

more than two hundred functions available in the procedural language.

ART-Ada's rule system is based on the optimized Rete pattern-matching

algorithm [9]. Unlike OPS5, ART-Ada rules can pattern-match on objects called

schernas as well as on lists called facts. _ _'acts are similar to Lisp lists and do not sup-

port any inheritance. Schemas are similar to CLOS (Common Lisp Object System) ob-

jects; they are organized as attribute-value pairs and support inheritance through the

6

ART-._)A DESIGN PROJECT - PI-L_SE lI FINAL REPORT

is-a (subclass) and instance-of (member) relations. In the following example, mammal

and dog are schemas while (animal-found dog) is a fact..Wammal is a class and dog is a

subclass of the class mammal; they are linked with an is-a llnk. On the other hand.

fido is a member of classes dog and mammal; it is linked to the class dog through an

instance-of link. The significance of the relations is-a and instance-of is that the

attribute-val_e pairs gets inherited either from a class to a subclass or from a class to a

member. In the following example, fido will inherit attributes (eats meat), (socialization

pack), (locomotion-mechanism run), and (instance-of mammal) from dog; it will also in-

herit (feeds-offspring milk) and (skin-covering hair) from mammals. As shown in the

rule determine-if-dog that matches on both a schema pattern (schema ?animal (...)) and

a fact pattern (classify-animal ?animal), the ART-Ada rules can match with schemas as

well as facts. In order to optimize performance, ART-Ada uses two separate pattern

matchers: one for schemas and one for facts.

(defschema mammal

(feeds-offsprlng milk)

(skin-coverlng hair))

(defschema dog
(is-a mammalV
(eats meat)

(socialization pack)
(locomotion-mechanlsm run))

(defschema fldo

(instance-of dog)
(owned-by John))

(defrule determlne-i f-dog

"Determine if subJect_is_ a dog."

(classlfy-anlmal ?animai)
(schema ?animal

(is-a mammal)
(socialization pack)
(eats meat))

=>

(assert (schema ?animal

(is-a dog)))

(assert (anlmal-found dog)))

%Vhen an expert system deduces a conclusion (e.g.to diagnose faults in an electric

circuit),it isoften_required to answer a question llke "why?". This capability iscalled

explanation. In ART-Ada, an explanation capability can be implemented using the

justification system. When enabled, the justificationsystem can provide a listingof

the rules and data objects wh!ch we! e respons!ble for creating a particular fact Or

schema. By embedding featuresof the justificationsystem in an application,the expert

system can trace the steps leading to a particularconclusion. The justificationsystem is

also a powerful debugging tool when used during the development of an expert system.

w

I

mm

l

W

I

i

I

m

g

!
m
mm

m

mm

m
z

w

m
mm
mm

l

g

9'

g

i
I

I

Lm

mm
m

W

m

W

.\RT-ADA DESIGN PROJECT - PFb_.SE II FINAL REPORT

Should an application exhibit unexpected behavior during development, the program-

mer can exploit the features of the justification system to discover the sourc'e or" the

problem.

In the following example, if (classify-animal my-kangaroo) matches with a LH$ pat-

tern (classify-animal ?animal) where ?animal is a variable, and the r_lle fires to :_sert

(schema my-kangaroo (is-a marsupial)), then we say that (classify-animal my-kangaroo)

justifies (schema my-kangaroo (is-a marsupial)). In ART-Ada, consistency of the

knowledge base is maintained by a justification-based truth maintenance system

(JTMS) called Logical Dependencies. If logical is wrapped around (classify-animal

?animal), (schema my-kangaroo (is-a marsupial)) is not only justified b!J but also

logically dependent on (classify-animal my-kangaroo); when (classify-animal my-

kangaroo) is retracted from the knowledge base, (schema my-kangaroo (is-a marsupial))

is also retracted, and therefore consistency of the knowledge base is maintained

automatically.

(defrule determlne-if-marsuplal

"Determine if subject is marsupial."

(logical (classify-animal ?animal))

(schema ?animal

(is-a mammal)

(carrles-offsprlng pouch))
=>

(assert (schema ?animal

(is-a marsupial))))

In MRT-Ada, object-oriented programming can be used with rule-based programming

to take advantage of both paradigms. In the following example, the rule

print-out-object is used to sent the print message to all objects that are instances of

object. When an object m_l-triangle matches with the rule print-out-object, an inherited

method print-triangle will be invoked. Methods can be defined either in ART-Ada's

procedural language using de f-art-fun which is similar to the Lisp defun, or directly in

Ada using de f-user-fun which will be discussed later.

D

u

W

w

J

M:_T-,_DA DESIGN PROJECT - PHA.SE II FINAl+ REPORT

;;; define print methods using def-_rt-fun

(def-art-fun print-unknown (?schema ?x ?y)

(printout t t "print unknown " ?schema ?x ?y))

(def-_rt-fun print-circle (?schema ?x ?y)

(printout t t "print circle " ?schema ?x ?y))

(def-art-fun print-trlangle (?schema ?x ?y)

(printout t t "print triangle " ?schema ?x ?y))

• define objects

(defschema object

(print print±unknown))

(defschema circle

(is-a object)

(print prlnt-circle))

(defschema trl_ngle

(is-a object)

(print prlnt-tri_ngle))

(defschem_ my-trlangle

(instance-of triangle)

(posltlon (I 2)))

"" define a rule that sends _ print message.

(defrule print-out-object

(schema ?object ::_ :

(instance-of object)

(position (?x ?y)))

=>

(send print ?object ?x ?y))

2.3 Knowledge Base Debugging

it

A.RT-Ada offers three main features in the user interface called the Studio:

• a command loop,

• a graphical user interface, and

• an integrated editor.

it

The Sun version supports only a command loop interface while the VA.X/x,rMs version supports all

three.

l

W

m

ira,

R
i

m

!

E
D

!

l

m

m

!

l
i
U

m

m

I

m

ID

!
I

III

!

IlF

!

m

z
!

If

9
I
U

ART-:LDA DESIGN PROJECT - PFL_.$E II FIN.<L REPORT

w

v

.ART-Ada's command loop is similar to the Lisp eval loop, in which user input is inter-

preted. X[ore than two hundred functions are available in the command loop. Even

Ada functions can be added to the command loop and called from the command loop.

,,_ ° ,The ._tudlo s interactive, menu-based graphical user interface provides immediate ac-

cess to the knowledge base, and lets you monitor any aspect of program development or

execution via an integrated network of menus and windows.

The Studio also provides a tightly integrated interface to the GNU Emacs full-screen

editor. This interface facilitates the ART-Ada program development process by provid-

ing a number of powerful capabilities, such as incremental compilation of M:{T-A,ta
code.

==

[-7

v

m

w

I

I

I

w

The ._RT-Ada Studio can be used to do the following:

• Develop and execute an ART-Ada application.

Browse the knowledge base-- to examine declarative (facts/schemas)

knowledge, procedural (rules) knowledge, and runtime state, such as matches
and activations.

• Debug the knowledge base -- by setting breakpoints in the programs and

tracing their execution.

• Develop applications incrementally-- by editing the knowledge base to

change facts or rules, or to modify program interactively.

• Generate Ada source code.

The AaRT-Ada/VMS Studio is based on DECwindows. The Studio is also imple-

mented using other user interface standards (e.g. PM, OSF/Motif, ISPF) on other plat-
forms.

2.4 Ada Integration

A major feature of ART-Ada isitsabilityto integrate expert systems technology with

Ada. A_RT-Ada supports three types of Ada integration:

• ,,idacall-out refersto an abilityto callAda subprograms (procedures and

functions)from the knowledge base (rulesand methods).

• Ada call-inrefersto an abilityto callART-Ada's public functions from Ada.

• Ada call-backis a special case of Ada call-inand refersto an abilityto call

i0

ART-ADA DESIGN PROJECT - PFLa.SE II FIN._L REPORT

ART-Ada's public functions from an Ada subprogram called from the

knowledge base using Ada call-out.

Designers of expert systems will want to develop their own Ada code to provide user

and system interfaces for their applications. There also may be a need to interface ex-

pert systems with other Ada applications (e.g. a signal processing application). A

primary benefit of incorporating Aria code into the knowledge base is that Ada code will

execute faster than similar code written in the ART-Ada procedural language..-\ ,' nsis-

tent Ada call-in and eali-out interface is provided for both development and deployment

environments so that user-written Ada code runs without modification when it is

deployed in Ada. In order to illustrite how an Ada subprogram is called from the

knowledge base, let's consider the following rule:

(defrule distance-calculatlon-rule

"calculates distance between airfield and base"

(schema ?airfield

(instance-of airfield)

(lat ?latl)

(ion ?lonl))

(schema ?base.

(Instance-of base)

(lat ?lat2)

(ion ?lon2))

=>

(bind ?distance

• " call an Ada function to calculate distance

(ca!culate-distance ?iatl ?lonl ?iat2 ?lon2))

(assert (distance ?base ?airfield ?distance)))

The function, calculate-distance, can be implemented either in the ART-Ada

procedural language or in Ada, but the Ada version would run faster. The ART-Ada

construct &�-user-fun specifies the interface between A_RT-Ad%andAda. It establishes

an ART-Ada function name which eaiis out, to the corresponding Ada Subprogram, and

it provides a description of data being passed. For example, calculate-distance can be

specified as an Ada function as follows:

(def-user-fun calculate-distance

args ((latl :float)
(lonl :float)

(lat2 :float)

(lon2 :float))

returns :float

compiler :dec-ada)

This de f-user-fun statement specifies that the ART-Ada function calculate-distance

will call out to an Ada function CALCULATE DISTANCE. There are four arguments

of a type floating-point number being passed to Ada. The return value is also a

w

III

II

i
n

!

b

:---
II

n

Ii

_il

m

II

I

II

n

m
II

!
m

i

!
i

II

I

!

IU

m

ID

I

IP

II

IP

i
11 li

= =

ART-AI)A DESIGN PROJECT - PI-LhSE II FINAL REPORT

floating-point number. It also specifies the default Aria comPiler for the platform (i.e.

DEC Ada). The corresponding Ada code should be _leclared in a package called [SER

and would look llke:

-- ART is a public package of ART-Ada.

wi%h ART;

-- USER is a package for user's Ada code.

package USER is

function CALCULATE DISTANCE

(LATI, LONI, LAT2, LON2 • ART.FLOAT TYPE)

re%urn ABT.FLOAT TYPE

end USER;

=

,m,,-

I

i

m

i

!if

Ada data types supported for the call-in and call-out interfaces are: 32 bit integer

(INTEGER TYPE), 64 bit float (FLOAT_T'_E), boolean (BOOLEAN_TYPE),

string and symbol (STRING), and an abstract data type for objects in ,_T-Ada

(ART_OBJECT). Table 2-1 summarizes the mapping between ART-Ada and Ada

data types.

ART-Ada Ada Comments

integer INTEGER TYPE 30.Bits

float FLOAT TYPE 64 Bits

boolean BOOLEAN TYPE -

string STRING -

symbol STRING

art-object ART OBJECT abstract data type

Table 2-1: Data Types for Ada Call-in/Call-out

2.5 Ada Code Generation

AS_.T-Ada takes one or more ART-Ada source files as input and outputs Ada source

files that represent a single Ada package. At any point after ART-Ada source files are

loaded into ._RT-Ada and the knowledge base is initialized for execution, the Ada code

generator may be invoked to generate Ada source code. An Ada package specification

generated by ART-Ada for an example application called MY_E_-_ERT_SYSTENI is

shown below:

12

M:_T-.M)A DESIGN PRO IECT - PFbXSE II

-- generated automatically by ART-Ada

package MY_EXPERT_SYSTEM is

-- initialize the application.

procedure INIT

end MY EXPERT SYSTEM;

FIN XL REPOP, T
W

U

D

m
I

A simple Ada main program that initializes and runs the application
NW Ek_ERT SYSTEM is shown below. It is the simplest way to run an :kET-A,Ia

application in an Ada environment. It is possible, however, to embed it in a large Ada

program. ._RT-Ada's public Ada packages, ART and SCHEMA, include a full set _I"
Ada utilities to control and access procedurally the knowledge base from Ada. In

0P$5, for example, it is hard to access working memory elements procedurally. In

ART-Ada. Ada utilities are provided to access the knowledge base directly from Ada.

E

m

W

with ART, MY EXPERT SYSTEM;

procedure MA_N is -
TOTAL RULES " ART.INTEGER TYPE

begin

MY EXPERT SYSTEM.INIT;
TOTAL RULES := ART.A RUN(-1);

end MAIN;

This is a main program written by the user.

ART is a public package of ART-Ad_.

-- initialize it.

-- run it.

In addition to generating the Ada source code that initializes the knowledge base, a

call-out interface module is generated as a separate procedure; it is a large case state-

ment that contains all Ada subprograms called ou t to from ART-Ada. ,_RT-Ada also

generates a command file used to compile all Ada files generated by ART-Ada.

m

I

i

E

m

m

i

W

m

2.6 Ada Runtime Deployment

The methodology for developing an ._R.T-Ada application defines three distinct plat-

forms, some or all of which may be the same:

• an ART-Ada development platform with Ada call-in and call-out capability

on which an application is actually developed and debugged; : =::

• an Ada compiler platform on which either a self-targeted

cross-compiler is used to compile Ada source code; and

compiler or a

: • a target platform on which an Ada executableimage will be deployed:

The development phase would involve the development of an ,_CtT-Ada program and

the Ada code that, interfaces with ,4a_T-Ada, which occurs on the ART-Ada develop-

_m
m

!

m

!

m

iB

W
!

g

i

m

w

__m
13 g

ART-M)A DESIGN PROJECT - PHASE II FINAL REPORT

L

-- e

m--

__--'--

l

m

D

IB

m

B

m

m

ment platform. The deployment phase would involve the compilation of the Ada code

generated by ART-Ada and written by the user. which occurs on the platform where

the Ada compiler runs. The generated Ada code contains application-specific code.

The actual Ada-based inference engine is contained in the ART-Ada runtime kernel.

The ART-Ada runtime kernel is provided as an Ada library. [f the Ada compiler is a

self-targeted compiler, the Ada executable image will be deployed on the same platform

where the Ada compiler runs. If it is across-compiler, it will be deployed on the target

platform (which may be an on-board computer).

The steps needed to deploy an ART-Ada application in Ada are summarized below:

. Develop and debug an application using ART-Ada's interactive development

environment. If necessary, call out to Ada using the call-in/call-out inter-
face.

'2. Generate Ada code from ART-Ada using the Ada code generator. If the

Ada compiler platform is different from the ART-Ada development plat-

form, the generated Ada code can be moved to the platform on which the

Ada compiler runs as long as the ART-Ada runtime kernel is available for

that platform.

. Compile the generated Ada code and user-written Ada code using either a

self-targeted compiler or a cross-compiler into an appropriate Ada library of

the MRT-Ada runtime kernel.

4. Create an Ada executable image by linking an Ada main program.

5. Deploy the Ada executable image on a host computer or on a target system.

2.7 Performance Benchmarks

Historically, benchmarking of software systems, and especially expert systems develop-

ment tools, has been an area of great controversy. One problem is that the comparisons

are often "apples and oranges" --- some tools are good for one thing, but not for others.

Another problem is the effort required to make a benchmark program run on many dif-

ferent tools. This usually results in simple, toy problems being used as the basis of the

benchmark study. Toy problems, however, seldom have the same performance charac-

teristics as real applications. In particular, toy problems do not indicate how the tool

responds to large knowledge bases. We selected benchmarks that specifically "stress

test" the system in ways typical of large applications.

The tests selected were designed so they can be scaled to a variety of problem sizes.

Each test was on problem sizes of 50, 100 and 200. Many pattern matching systems, in-

eluding ART-Ada, perform pattern matching when the assertions or objects are placed

14

ART-ADA DESIGN PROJECT - PHASE 1[FINAL REPORT

into the knowledge base. For this reason, the tests and times also include the time re-

quired to place the objects into the knowledge base. For applications with a large, rela-

tively static, knowledge bases, the initial assertion time costs can be incurred during sys-

tem development and are not realized by the deployed application. For .MR.T-Ada ap-

plications, this can result in more than an order of magnitude speed improvement over

the times listed here.

The tests were run on a Sun 3/?60 with 16 megabytes of memory using the Verdix

Ada compiler version 5.5(t). No attempt was made to optimize the compiled code by

using a maximum optimizer option or by suppressing constraint checking.

2.7.1 Simple Constant Attributes

A large number of rules were generated, each with a different set of constant pattern.

Exactly one assertion was made into the knowledge base that corresponds to each pat-

tern. This is the simplest form of pattern matching, however, it is the only kind

provided by many tools. The example below is the test of size 3. Tests of size 50, 100

and 200 were performed. For each ease, one additional rule fires to initialize the

knowledge base.

(defrule TI (a O)(b 0)(c O) =>)

(defrule T2 (a l)(b l)(c 1) =>)

(defrule T3 (a 2)(b 2)(c 2) =>)

(defrule x =>

(assert (a O)(b O)(c 0))
(assert (a l)(b l)(c I))

(assert (a 2)(b 2)(c 2))

The resultsof the testare:

SIZE RULES/SECOND FIRED Ti_

50 94 rules/second 51 0.54 seconds

I00 84 rules/second I01 1.20 Seconds

200 59 rules/second 201 3.40 seconds

2.7.2 Simple Patterns with Co-occurring Variables

A single rule containing three patterns is in the knowledge base. The patterns contain

a co-occurring variable (?i). A large number of knowledge base objects are created that

can cause the rule to fire. Each knowledge base object paticipates in exactly one rule

firing. The example below is the test of size 3. Tests of size 50, 100 and 200 were per-

formed. For each case, one additional rule fires to initialize the knowledge base.

w

g

=_

t

W

g

m

|

I

I

U

I
W

U

I

m

B

w

!

U

15 m

ART-ADA DESIGN PROJECT - PIL-XSE lI FINAL REPORT

rE

m

I

m

!

m

m

B

w

W
m

(defrule y (a ?i)(b ?i)(c ?i) =>)

(defrule xl =>

(assert (a O)(b O)(c 0))

(assert (a l)(b l)(c I))

(assert (a 2)(b 2)(c 2)))

The results of the test are:

SIZE RULES/SECOND FIRED

5O

100

200

TIME

88 rules/second 51

79 rules/second 101

56 rules/second 201

0.58 seconds

1.28 seconds

3.58 seconds

2.7.3 Objects with Co-occurring Variables

A single rule containing three patterns is in the knowledge base. The patterns contain

a co-occurring variable (?i). A large number of objects are created that can cause the

rule to fire. Objects occur in pairs, such that each pair causes one activation of the

rule. The example below is the test of size 3. Tests of size 50, 100 and 200 were per-

formed. For the tests of size 50 and 100, 1 additional rule fires to initialize the

knowledge base. For the test of size 200, 2 initialization rules fire.

(defschema x (a)(b)(c))

(defschema y (d)(e)(f))

(defrule z
(schema ?x (instance-of x)(a ?xl)(b _x2)(c ?x3))

(schema ?y (instance-of y)(d ?xl)(e ?x2)(f ?x3)))

(assert

(assert

(assert (schema TI8

(Instance-of y)

(defrule To (declare (salience i000)) =>

(assert (schema TI

(instance-of x) (a T2) (b T3) (c T4)))

(assert (schema T2

(Instance-of y) (d T2)(e T3)(f T4)))

(assert (schema T9

(instance-of x)(a TlO)(b Tll)(c TI2)))

(schema TIO

(Instance-of y) (d TIO)(e Tll)(f TI2)))

(schema TIT

(Instance-of x)(a Tl8)(b TIg)(c T20)))

(d T18)(e Tlg)(f T20))))

The results of the test are:

16

._RT-.M)A DESIGN PROJECT - PHASE II

SIZE RULES/SECOND FIRED TIME

50 38 rules/second 51 1.34

I00 38 rules/second i01 2.64

200 37 rules/second 202 5.48

FINAL REPORT
w

seconds

seconds g

seconds

l

m

W

m

m
J

!
n

I

g

J

m

mm

I

l

m

,,m

mm

m

g

i

m
m

l

mm

m

W

17

I

D

I
W

.4dRT-ADA DESIGN PROJECT - PFL-_SE IF

3. Discussion

F[N.\L REPORT

F

E

3.1 Ada Issues

Our internal benchmark results show that the speed and size of .CRT-Ada is much

better than that of a Lisp-based tool ART while it is somewhat slower and lar_er than a

C-based tool ART-IM. While Ada compilers are improving, they still have not reached

the maturity of C compilers. In fact, because of numerous bugs found in the Ada com-

pilers used for this project, we could not make some of the obvious performance op-

timizations that could have made A_RT-Ada faster and smaller. In addition to the com-

piler problems, we also discovered some fundamental issues with the Ada language itself

that also affected the performance of ART-Ada. Both of these issues will be discussed

in the later sections. It has also been observed that both the speed and size of .KRT-

Ada vary up to 30% depending on which Ada compiler is used. A recent paper dis-

cusses the key technical issues involved in producing high-quality Ada compilers [101.

As Ada compiler technology advances, A_RT-Ada's performance will improve.

3.1.1 Compiler Problems

Several reports from Ada compiler vendors indicate that some Ada programs might

run faster than the equivalent C programs. Contrary to these claims, our Ada im-

plementation is slower and larger than the C implementation. Although we believe the

main reason is the restrictive nature of the Ada language itself, Ada compiler bugs also

contribute to the poor performance. We used the Verdix Ada compiler on a Sun

workstation and the DEC Ada compiler on a VAXstation running the VMS operating

system.

• The bit-level representation clause or the pragma pack can be used to reduce

the size of data structures. For example, a boolean field in a record, which

is normally a byte, can be reduced to a single bit. These features do not

work in one of the compilers we used; an illegal instruction error occurs

when the single-bit boolean field is referenced. This is probably a bug in the

code generator. Due to this bug, no attempt was made to reduce the size of

ART-Ada by using these features.

In ART-Ada, we reuse several Booth components [4]. These software com-

ponents are used to implement data structures (e.g. linked lists and strings)

and other utilities (e.g. quick sort). Most Booch components are imple-

mented as generic packages using object-oriented design methodology. This

means that a large number of subprograms are provided in each generic

package, which may be instantiated multiple times. Unfortunately, one of

the compilers does not support a feature called 8elective lfnkfng --- a linker

feature that makes it possible to include only those subprograms actually

used in the program. The underlying mechanism used by the compiler is the

m

18

: L:7 : :

A.RT-ADA DES[GN PROJECT - PIL-'_SE II FINAL REPORT

Unix linker (ld), which does not support selective linking..-ks a result, when-

ever a generic package is instantiated and included using the tt,ith statement,

all subprograms in the package will be always included in the executable im-

age regardless of their actual usage. This will increase the size of the ex-

ecutable image.

• \Ve could not use an optimizer in one of the compilers because it generated

bad code.

3.1.2 Dynamic Memory Allocation

Due to the dynamic nature of expert systems, it is necessary to allocate memory

dynamically at runtime in ?G_T-Ada. In Ada, new is used to allocate memory and

unchecked_deallocation is used to deallocate it. Our experiment shows that the

average overhead of new in the Verdix compiler is about eighteen bytes, i.e. every time

new is called, an extra eighteen bytes are wasted. This result is obtained by using a

program that allocates the same data structure multiple times using new and measuring

its process size with the Unix command "ps aux" We repeated the same experiment

using several data structures of different size. According to Verdix, new eventually calls

malloe. We tried similar experiments using the Sun C compiler. The average overhead

of malloc was about eight bytes, which was significantly smaller than that of Ada. It is

not clear why it is necessary to add extra ten bytes to every malloc. The only infor-

mation needed to call free is the size of the memory, which can be obtained from the

data type used to instant:ate the generic procedure unchecked_deallocation. The ex-

ceptions are unconstrained arrays and variant records whose size can vary. For these

data types, it would be necessary to add four bytes to store the size information. The

actual measurement results are summarized in Tables 3-1 and 3-2. Units in these tables

are bytes. The C and Ada program used are shown below:

19

I

!
tD

m

N
g

!

m

I
n

J

u

J

B

D

w

U

I

J

!
m

m
!

m,
J

m

!

g

=

I

I

!

Z " :

!I
g -'-

.-hRT-A_DA DESIGN PRO,JECT - PI-L-XSE II

_include <stdio.h>

main()
{

Int i

for(i:O; i<100000; 1++) {

m_11oc(32)

}
getch_r()" /, me_sure the process slze _t thls point */

FINAL REPORT

= =

[]

U

with TEXT IO

procedure TEST_NEW is

type ELEMENT is

record

FIELD1 : INTEGER;

FIELD2 : INTEGER;

FIELD3 : INTEGER;

FIELD4 : INTEGER;

FIELD5 : INTEGER;

FIELD6 : INTEGER;

FIELD7 : INTEGER;

FIELD8 : INTEGER;

end record;

-- 4 byte

-- 4 byte

-- 4 byte

-- 4 byte

-- 4 byte

-- 4 byte

-- 4 byte

-- 4 byte

type ELEHENT PTR is _ccess ELEMENT;
PTR • ELEMENT PTR

CHAR • CHARAC_F__;

begin

for I in l..lO0000 loop

PTR := new ELEMENT;

end loop;
TEXT 10.GET(CHAR); -- me_sure the process slze at this point

end;

20

A.RT-ADA DESIGN PROJECT - PFL_SE II FIN.._ REPORT

Item Size

8

16

24

32

8

16

24

32

Average

Item Count

100,000

100,000

100,000

100,000

50,000

50,000

50,000

50,000

N/A

Ideal Size

800 K 2496

1600 K 3312

2400 K 4128

3200 K 4808

400 K 1408

800 K 1816

1200 K 2224

1600 K 2496

N/A N/A

Actual Size

K

K

K

K

K

K

K

K

Overhead

1696 I(

1712 [(

1728 K

1608 K

1008K

1016 K

1024 K

896 K

N/A

Overhead/Item

16.96

17.12

17.28

16.08

20.16

20.32

20.48

17.92

18.29

Table 3-1: Overhead of Dynamic Memory Allocation using new in Ada

t

W

II

W

m

g

=

m

Item Size

8

16

24

32

16

Item Count

100,000

100,000

100,000

100,000

50,000

50,000

Ideal Size

800K

1600 K

24OO K

3200 K

400K

8o0 K

Actual Size
i

1600K

2384 K

3160 K

3944 K

816 K

1208 K

1600 K

Overhead/ItemOverhead

800K

784K

760 K

744 K

416 K

4O8 K

400K

392K

N/A

8.0

7.84

7.60

17.44

8.32

8.16

24 50,000 1200 K 8.0

32 50,000 1600 K 1922 K 7.84

Average N/A N/A N/A 7.9

!

m

i

g

!I

w

Table 3-2: Overhead of Dynamic Memory Allocation using malloc in C

The real problem with this overhead is that in ,M:_.T-Ada new is called very frequently

to allocate relatively small blocks while in ART-IM malloc is called only to allocate

large blocks (e.g. loo Kbytes). In order to achieve maximum time and space efficiency,

.MRT-IM has been optimized in ways that are not portable to Ada. For example, the

type east feature of the C language has been used both to optimize data structures and

im

J

m

21 w

w

ART-ADA DESIGN PROJECT- PHASE II FI.N.-IL REPOIIT

to implement an internal memory manager. ._T-INI's memory manager maintains its

own free lists and handles all allocation and deallocation requests from the ART-INI ker-

nel;]t allocates large blocks of memory from the system, and then fulfills]ndRidual

(relatively small) requests for storage ft'om the large blocks..-ks storage is released, it is

added to internally maintained free lists; the blocks themselves are never released back

to the system. There are several advantages to this approach:

The free space is managed in a common pool by a single facility and is avail-

able for allocation of arbitrary data types by using the type east capability
in C.

w

u

The overhead of this approach consists of a fixed overhead and a very small

incremental overhead for each large block. The fixed overhead is 1 Kbyte.

Internally, all small blocks freed from ART-IM are maintained in free lists.

There are 256 free lists, each of which holds memory blocks with different

sizes. All blocks in a free list are of the same size. The head of these linked

lists consumes 4 bytes. Therefore, the total overhead to maintain these

linked lists is only 1 Kbytes. The subsequent items in these linked lists store

the next pointer within the small block itself, which results in absolutely no

overhead. When'a large block (e.g. 100 Kbytes) is allocated from the operat-

ing system, it is maintained in a linked list. Each item in this linked list

consumes 12 bytes, and therefore the overhead is only 12 bytes per every I00

Kbytes, which is negligible.

• It is faster than using system routines for small requests.

The success of Ad:_T-IM's use of type casting relies on other features of the C language

definition: there is a direct correspondence between addresses and pointer types; the

mapping between data types, including structures and arrays, is well defined and

straightforward. Ada does provide a facility for converting between data types, al-

though this feature has intentionally been made difficult to use. In order to convert

from one data type to another, the generic function unchecked conversion must be in-

stantiated for each conversion required. The implementation of a type cast capability

in Ada is insufficient to implement the ART-IM features described above, however. No

correspondence is guaranteed between the type SYSTEM.ADDRESS and Ada access

types. Indeed, on some implementations the underlying representation is different for

addresses and access types. The constraint checking requirements of Ada require that

the representation of many objects include descriptor information. The format of these

descriptors is not defined by the language. Hence, it is impossible to implement the

ART-IM style memory manager in Ada using unchecked_ conversion.

Another related problem was how to convert the C code shown below. In this ex-

ample, the & operator is used to resolve the pointer reference at compile time through

the static array initialization. C code similar to this example is used to convert the

ART-IM internal data structures into C source code.

R 22

ART-?d)A DESIGN PROJECT- PFL-XSE II FINAL REPORT

IIW

struct foo {

long ,bar_ptr;

}.

struct bar {

I

i

mm

};

struct bar barl[lO] : { ... };

struct foo fool[lO] = {

{_barl[5]}, /* fool[O] points to barl[5] ,/

w

mm

!

i

i_
J

.

There are two problems in implementing this in Ada:

• .-ks mentioned earlier, unchecked conversion is not

operator.

as flexible a_ the &

• Even if it is possible to emulate the & operator with unchecked_conversion,

it is not possible to free these data structures using unchecked deallocation

because they are not created dynamically through new.

.as a consequence, we had to create all data structures dynamically using new.

resolve the pointer references, we used the following method:
-::..

1. When a data structure is created, its pointer value returned by new is stored

in a temporary polnter array.

.

.

When a data Structure has a pointer reference, the index of the temporary

pointer array andthe data type of both referencer'and-referencee are stored

in a cross reference table for later processing.

,M'ter all data structures are created, the cross reference table is processed

The actual pointer value is fetched from the referencee pointer array and

stored in the referencer:

, M'ter all pointer references are resolved, the temporary pointer arrays and
the cross reference table are freed,

To

I

R

m

m

J

B

W

!
z
i

g

I

I

g

B

mm

The disadvantage of this approach is {hat large blocks of memory must be allocated ! i

23
H i

v

:

v

I

B

m

i

E

m

E

._d_T-,M)A DESIGN PROJECT - PI-L-XSEII FINAL REPORT

and freed at runtime. The size of the cross reference table could be quite large. In Fact.

we could not use the 16-bit integer as an array index because it overflowed on a large

test case.

The problems of dynamic memory allocation in Ada can be summarized a.s follows:

• The direct ,:se of new and _nchecked deallocation is the only dynamic

memory management method available in Ada. The problem with this

method is that new incurs a fixed overhead associated with each call and it

is called very frequently to allocate a relatively small block for an individual

data structure. It results in a performance penalty in size and the slower ex-

ecution speed. This is also aggravated by the poor implementation of new in

the Ada compiler.

The existing Ada features, new, unchecked_ deallocation, and

unchecked_conversion, are too restrictive and totally inadequate for a com-

plex system that requires efficient memory management. More flexible fea-

tures (perhaps in addition to the existing ones) should be provided. This is

particularly important in embedded system environments that impose a

severe restriction on the memory size.

Various Ada language issues are being studied by several working groups for the Ada

9X standard [1], [2]. We believe that the issue of dynamic memory management and

other issues discussed in this paper should also be considered for the Ada 9X standard.

3.1.3 Other Language Issues Related to ART-Ada Performance

The issue of dynamic memory management is, we believe, by far the dominant factor

for the overhead in ART-Ada performance compared with that of _:{T-IM. Other

issues in the Ada language that also contribute to the overhead are summarized below:

• ART-IM has an interpreter (similar to a Lisp interpreter) that calls a C func-

tion using a C function pointer. To emulate ART-IIvI's function call

mechanism, the Ada code generator automatically generates Ada source code

for a procedure called FUNCALL that has a large case statement. This case

statement contains all the Ada subprograms that are called from an ART-

Ada application. Each subprogram is assigned with an ID number. To call

an Ada subprogram, the procedure IrUNCALL is called with a subprogram

ID number. While it may cause maintenance problems, the use of function

pointers can provide better performance than the use of the Ada case state-

ment.

• Bit operations (e.g. bitwise exclusive OR, bitwise shift operations, etc.) that

may be used to implement efficient hashing algorithms are not provided in

Ada. They may be implemented in Ada but only with poor performance.

24

IR

.M:)_T-)d)A DESIGN PROJECT- PHASE II FINAL REPORT

• The variant record is the only Ada data type that can be used to implement

C's union, but it is not as efficient nor flexible.

3.1.4 Portability

Ada is quite portable and probably more portable than C. Contrary to popular belief.

however, Ada is not 100g/o portable.

Since the development environment of A_RT-Ada is written mostly in C, an

Ada binding is developed to interface it with Ada. We found it extremely

hard (if not impossible) to write portable binding code for multiple compilers

running on multiple platforms. The pragmas for importing and exporting

subprograms are not portable. The parameter passing mechanism between

Ada and C is not standardized. Because of this, a mechanism for string con-

version between Ada and C is not portable.

The standard syntax for most pragmas are not defined in the Ada Language

Reference Manual. Consequently, the pragma syntax often varies among dif-

ferent compilers.

No standards exist for INTEGER, FLOAT, LONG_INTEGER,

LONG_FLOAT, SMALL_INTEGER, SMALL_FLOAT, etc. ART-Ada

supports 32-bit integers and 64-bit floats internally. We had to define

INTEGER_TYPE and FLOAT_ TYPE as subtypes of whatever a compiler

defines as such. For example, in the Verdix compiler STANDARD.FLOAT

is 64-blt while in the DEC compiler STANDARD.LONG FLOAT is.

Since the math library, which is part of the standard C language, is not part

of standard Ada, it is hard to write portable Ada code that uses math func-

tions.

• The representation clause is not portable because different Ada compilers

and hardware platforms may use a different memory boundary.

Some code is simply not portable. For example, in ART-Ada, a public func-

tion is provided to invoke the operating system commands. Obviously, the

implementation of this function is not portable among different operating

systems.

Different Ada compilers or even different versions of the same compiler often

have a different set of bugs. It may be necessary to maintain multiple ver-

sions of the same code to work around them.

In C, conditional compilation facilitated by preprocessor directives (e.g #define and

g

I

D

m

b

lw

I

m

m

L

i

g

I

m

g

D

J

!

25 _

A.RT-,_DA DESIGN PROJECT - PFD,$E II FINAL REPORT

#if) allows maintaining a single source file for multiple platforms. In Ada, no such

facility exists, and multiple files may have to be maintained for multiple platforms.

Since we had to maintain ART-Ada on multiple platforms (possibly on multiple com-

pilers on the same hardware), we did not want to maintain multiple files. .-kt first, we

were going to write a preprocessor in Ada or in C. After some experiments, however, we

found the C preprocessor (cpp) on a Sun quite adequate for preprocessing the Ada

master file with cpp macros embedded (e.g. #if, #endif, etc.).

The master file includes Ada code and appropriate cpp commands for multiple plat-

forms :

#if VERDIX

subtype FLOAT_TYPE is FLOAT"

_endif

#if VMS

subtype FLOAT_TYPE is LONG_FLOAT

#endif

=---

m

m

m

U

m

_Ve define app as follows:

/llb/cpp $I $2 $3 $4 $5 $6 $7 $8 $9 1 grep -v "^#"

Then, we execute the following commands:

app -DVERDIX foo.a.master > foo._

app -DVMS foo.a.master > foo._d_

The first one creates a file for the Verdix compiler on a Sun, and the second, for the

DEC Ada compiler on a V,MX:/VMS.

The problem with this is that the Ada master file is still not a compilable Ada file and

has to be preprocessed manually. We also have to maintain multiple Ada files

generated by cpp. It would be better if the preprocessor is part of the standard Ada

language so that only a single source file is maintained and processed directly by the

Ada compiler.

m

v

_aa

m

3.2 Hardware Issues

Although semiconductor technology is improving very rapidly in the commercial sec-

tor, embedded processors are still based on old technology. Modern operating system

features such as virtual memory are not readily available on most on-board computers.

The resource requirements on these computers such as processor speed and real memory

are quite stringent. The Air Force standard avionics processor MIL-STD-1750A, for ex-

26 =

ART-ADA DESIGN PROJECT - PFL_.SE II FINAL REPORT

ample, supports address space of only 1 megaword. Another restriction is that its

memory must be partitioned into multiple 64 Nbyte segments. The newer GY]-IS[C

(Generic YTIS[C) version will support 8 megaword, but the 64 [_ibyte segment restriction

will still remain. This is certainly too restrictive for Ada-based expert systems that

would probably require at lea.st one Mbyte of contiguous memory space. \Ve believe.

however, that .4J_T-Ada can satisfy the resource requirements for the newer embedded

processors such as the Intel 80386 and 80960, the Motorola 68000 and 88000, and the

MIPS RISC chip. Another requirement for porting ._RT-Ada to an embedded system is

the dynamic memory management support in the Ada runtime executive.

g

g

U

i

m

g

z

J

D

w

I

m

m

I

m

g

m

m

lid

--_--

I

m
R

J

21' I

I

M_T-ADA DESIGN PROJECT - PI-L-kSE II FINAL REPORT

4. Related Work

IntelliCorp has clone some research to develop a system for translating ICEE applica-

tions into Ada [8]. On the surface, the main difficulties of the approach seem to be Ada

integration during development and the translation of Lisp code to Ada. The advan-

tage of .M:_T-Ada is that Ada subprograms can be called directly from the knowledge

base during development. Since the development environment of .M1RT-Ada is written

in C, Ada call-back is used to integrate Ada subprograms. Ada call-back simply means

that the Ada main program calls the C program (ART-Ada development environment),

which calls back to Ada subprograms. This is the only proper way to call Ada from

another language such as C. Ada is not only a programming language but also a run-

time environment. The use of the Ada main program ensures the proper initialization

of the Ada runtime environment. The problem with KEE is that it is written in Lisp.

Lisp is also a runtime environment like Ada. Therefore, it would be hard to start Lisp

from the Ada main, which is the only way to call back to Ada from Lisp. In fact, the

Lucid Common Lisp 3.0 used to implement KEE supports call-out to C, Fortran, and

Pascal but not Ada. ART-Ada also supports Ada call-in; there are over 200 Ada sub-

programs that can be used to control and access the knowledge base procedurally. It

would be impossible to implement Ada call-in in Lisp that allows Lisp functions to be

called from Ada. When neither Ada call-out nor call-in is available, actions in the rule

right-hand side (RHS) must be implemented in Lisp. The automatic translation of the

Lisp code to Ada would alleviate the burden of manual translation if it is technically

feasible. It might be possible to translate a small subset of Lisp to Ada automatically.

Even so, the efficiency of the translated Ada code would not be as good as hand-written

Ada code. This approach also excludes the use of existing Ada packages (for numerical

analysis, signal processing, etc.) in the knowledge base. In ART-Ada, existing Ada

packages can be easily integrated directly into the knowledge base even during develop-

ment.

FLAC (Ford Lisp-Ada Connection) uses a Lisp environment on a Lisp machine to de-

velop an expert system application and generate Ada code [211. In FLAC, the

knowledge base is specified using a graphical representation similar to that of VLSI

design (e.g. OR gates and AND gates). Since FLAC's development environment is

based on Lisp, it probably does not support Ada call-in/call-out. FLAC's knowledge

base is pre-compiled and static, which means that objects may not be added or deleted

dynamically at runtime although their values may be changed. This imposes major

functionality restrictions that do not exist in ,451T-Ada.

CHRONOS is a commercial expert system tool written in Ada that was introduced

recently. It is developed and marketed by a French company, Euristic Systems. Cur-

rently, little is published about this tool.

Another commercial tool is an object-oriented programming language called

28

ART-._kDA DESIGN PROJECT - PFL_SE II FIN._L REPORT

Classic-Ada[25]. Its input language is based on Smalltalk, but it works like C++;it is

a preprocessor that generates Ada source code. Unlike ART-Aria, the generated Aria

code is self-sufficient; it does not require an Ada runtime kernel to compile it. Al_ho_gh

Classic-Aria does not support rules, its object-oriented programming features are similar

to that of :LRT-Ada.

It is reported that several logic-based tools support Prolog in Ada [5], [:3], [14]. Al-

though Prolog can be used to implement expert systems, its approach and scope are sig-

nificantly different from expert system tools such as ART-Ada. These tools, therefore,

are not covered in this paper.

g

g

g

i

m
B

m

w

w
m

II

m
i

m

g

!
i

i

I

M

III

1
m |

3"

I |
! !

i i

i

'2.9

._RT-ADA DESIGN PRO.IECT - PI-D_SE I[FINAL REPORT

5. Future Directions

v
During the next several months, various sites selected by NASA and the Air Force will

be involved in the A_RT-Ada evaluation project. During this project, they will try to

implement prototype expert systems for the Space Station Freedom Program and other

Air Force applications to understand the potential uses and operational issues of ART-

Ada. At the end of the project, they will write areport about their findings.

At the same time, Inference will continue its research effort in the following areas to

better support real-time, embedded and distributed expert systems:

• to implement real-time enhancements for ART-Ada,

• to support ART-Ada on embedded processors, and

• to parallelize ART-Ada on a shared-memory multiprocessor.

We have identified four areas of enhancements for real-time support in ,M_.T-Ada:

• a set of tools for performance monitoring and tuning,

• temporal reasoning and trend analysis,

• kernel support for dynamic priority scheduling, and

• communications package for multiple cooperating .M:_.T-Ada processes.

The performance of an ART-Ada application varies widely depending on how it is im-

plemented. It is often necessary to monitor activities in the pattern matcher (e.g. the

number of pattern instantiations, partial matches, activations, etc.) or the execution

time of a rule RHS action in order to determine areas for optimization. Performance

analysis can be aided by a set of tools that graphically display information on the .M_T-

Ada execution. It is also possible to automate manual optimization process. It has been

reported tha, t an automated tool was successfully used to optimize join ordering [_'20].

A real-time monitoring-and-diagnosis expert system refers to an application that

monitors incoming data and performs fault diagnosis. In such a system, it is often

necessary to reason about and perform statistical analysis on temporal data -- data that

change over time. In order to avoid information overloading, several levels of abstrac-

tion should be used. Raw data are usually preprocessed to suppress noices and redun-

dant data and stored in a ring buffer. Historical data do not participate in the pattern-

matching process directly. Rather, high-level abstration acquired by applying temporal

reasoning and trend analysis to the historical data is used in the knowledge base for

fault diagnosis and other high-level tasks.

F 3O

ART-:kDA DESIGN PROJEC, T - PHASE I[FIN._ REPORT

In recent years, several real-time architectures based on the blackboard architecture

have been reported [12], [6]. In these real-time expert systems, priority can "be dynami-

cally determined based on the timing constraints and the resource requirements of 'a

tazk. Currently, in ,kRT-Ada rule priorities cannot be changed dynamically. We

believe that .M_.T-A.da can be enhanced to implement these blackboard architectures

with dynamic priority scheduling in a number of ways.

Multiple cooperating applications of A_RT-Ada can run either as multiple processes on

a single processor (e.g. Sun) or on loosely coupled multiple processors (e.g. m_lltiple em-

bedded processors on a bus or multiple Suns on the network). The communications

package for message passing between multiple ,M:{,T-Ada processes can be implemente,l

using various interprocess communications protocols (e.g. Unix sockets, "v%[S mailboxes.

Ada tasks). The asynchronous function facility in ART-Ada will be used t,o poll the

message queue between rule firings. The advantage of this approach is that, it does not

require a parallel computer with a shared memory and is suitable for embedded syst, ems

or distributed processors on a net, work.

ART-Ada can be parallelized using node parallelism on a shared-memory architecture

(e.g. Encore Multimax). Node parallelism exploits parallelism at the join node by cal-

culating matches in parallel. It has been reported that this approach can speed up

OPS5 programs up to 10-fold [11]. It, may not, be p0ssible, however, to exploit node

parallelism on an embedded system because most embedded systems do not support a

shared memory architecture.

I

g

g

i

w

!

i

m
i

!

g

g

u

m
i

m

g

m

I

u

i

m

i

roll

mm

I

g

._T-ADA DESIGN PROJECT- PI-L_SE II FINAL REPORT

References

i
W

w

W

v

1. Ada Language Issues Working Group. "Ada Language Issues Working Group

(AJLI\VG) Minutes of 17 August 1988". Ada Letters IX, 1 (January/February 1989).

2. AdaRuntime Environment Working Group. "Activities of theAda RuntimeEn-

vironment Working Group" Ada Letters IX, 5 (July/August 1989).

3. Bobbie, P.O. ADA-PROLOG: An Ada System for Parallel Interpretation of Protog

Programs. Proceedings of the Third Annual Conference on Artificial Intelligence and

Ada, 1987.

4. Booth, G. Software Componenta With Ada. Benjamin/Cummings Publishing,

1987.

5. Burback, R. PRO'vq_R: A First-order Logic System in Ada. Proceedings of the

Third Annual Conference on Artificial Intelligence and Ada, 1987.

6. Dodhiawala, R. et. al. Real-Time AI Systems: A Definition and An Architecture.

Proceedings of the International Joint Conference on Artificial Intelligence, IJCM, 1989.

7. Dzierzanowski, J.M. et. al. The Authorizer's Assistant: A Knowledge-based Credit

Authorization System for American Express. Proceedings of the Conference on Innova-

tive Applications of Artificial Intelligence, AAAI, 1989.

8. Filman, R.E., Book, C., and Feldman, R. Compiling Knowledge-Based Systems

Specified in KEE to ADA. Final Report, NASA Contract NAS8-a80a6, IntelliCorp Inc.,

August, 1989.

9. Forgy, C.L. "RETE: A Fast Algorithm for the Many Pattern / Many Object Pat-

tern Match Problem". Artificial Intelligence 19 (1982).

10. Ganapathi, M., Mendal, G.O. "Issues in Ada Compiler Technology" Computer

g2, 2 (February 1989).

11. Gupta A. et. al. Results of Parallel Implementation of OPS5 on the Encore Mul-

tiprocessor. CMU-CS-87-146, Carnegie-Mellon University, Department of Computer

Science, August, 1987.

12. Hayes-Roth, B. et. al. Intelligent Monitoring and Control. Proceedings of the In-

ternational Joint Conference on Artificial Intelligence, IJCAI, 1989.

la. Hugh, D.A. "The Future of Flying" AI Expert 3, 1 (January 1988).

14. Ice, S., et. al. Raising ALLAN: Ada Logic-Based Language. Proceedings of the

Third Annual Conference on Artificial Intelligence and Ada, 1987.

L_

L-

32

.-kRT-.M)A DESIGN PROJECT - PEL-_SE II FINAL REPORT

15. Inference Corporation. Ada-ART, Specification for an Ada-based State-of-the-Art

Expert System Construction Capability. Inference Corporation. August, 1987.

16. Inference Corporation..4_RTI,'Yrsion 3.2 Reference .%[anual. Inference Corpora-

tion, 1988.

17. Inference Corporation..M:{T/Ada Design Project - Phase I, Final Report. In-

ference Corporation, March, 1989.

18. Inference Corporation. ,4.RT-Ada/V;_[S 2.0 Beta Reference ,_[anual. Inference

Corporation, 1989.

19. Inference Corporation. ,4RT-I,_f/VMS 2.0 Beta Reference Nfanual.

potation, 1989.

20. Ishida, T. Optimizing Rules in Production System Programs. Proceedings of the

National Conference on Artificial Intelligence, A._-kI, 1988.

21. Jaworski, A., LaVallee, D., Zoch, D. A Lisp-Ada Connection for Expert System

Development. Proceedings of the Third Annual Conference on Artificial Intelligence

and Ada, 1987.

22. Lee, S.D., Allen, B.P. Deploying Expert Systems in Ada. Proceedings of the TRI-

Ada Conference, ACM, 1989.

23. Nakashima, Y, Baba, T. OHCS: Hydraulic Circuit Design Assistant. Proceedings

of the Conference on Innovative Applications of Artificial Intelligence, AAAI, 1989.

24. O'Brien, J. et. al. The Ford Motor Company Direct Labor Management System.

Proceedings of the Conference on Innovative Applications of Artificial Intelligence,

.a_kI, 1989. _

25. Software Productivity Solutions, Inc. ClasMc-Ada User ,V[anual. Software

Productivity Solutions, Inc, 1988.

Inference Cor-

w

J

m

w
!

I

!

I

m _

n

J

t

a

p

g

m

m

m

D

m

m

D

u

I

33
m

I
D

-- ._RT-ADA DESIGN PRO,IECT - PFL4.SEII FINAL REPORT

I. Beta Test Sites and Contacts

w

W

E

1.1 NASA Sites

Gary Riley

NASA/Johnson Space Center

Mall Code FM 72

Houston, TX 77058

(713)483-8073

GRILEY_nasamall@ames.arc.nasa.gov

Sun 4 with Verdix

Brandon Dewberry Sun 3 with Verdlx

NASA/Marshall Space Flight Center

Mail Code EB42

Huntsville, AL 35812

(205)544-4247

BDEWBERRY_nasamail@ames.arc.nasa.gov

Robert Jones .

NASA/Lewis Research Center

Mail Code 54-8

Cleveland, OH 44135

(216)433-3457

RJONES_nasamall@ames.arc.nasa.gov

Sun 4 with Verdlx

Rich Knackstedt VAX/VMS with DEC Ada

McDonnell Douglas Space Systems Company

Space Station Division
5301Bolsa

Mail Code A95/J845/22-3

Huntington Beach, CA 92647

(714) 896-2296

RKNACKSTEDT_nasamail@ames.arc.nasa.gov

1.2 USAF Sites

Bill Baker "VAX/VMS with DEC Ada

WRDC/TXI

WPAFB, OH 45433

(513)255-5800

BAKER_aruba.dnet@wpafb-avlab.arpa

Lori Attias

McDonnell Aircraft Company

VAX/VMS with DEC Ada

34

W

._qT-ADA DESIGN PROIECT - PHASE II FINAL REPORT

AI Center

314/105/1065205

P0 Box 516

St. Louis, M0 63166

(314)232-1858

FAX: (3!4)232-7499

Stephen Bate

McDonnell Aircraft Company

Mail Code: 064 4244

PO Box 516

St. Louis, MO 63166

(314)232-5844

FAX: (314)777-6203

Joe Hintz

Raytheon Company

Missle Systems Division
Mail Code: T3SU21

Tewksbury, MA 01876-0901

(508)858-5907

JCH@swlvx2.ray.com

VAX/V_S with DEC Ada

VAX/VMS with DEC Ada

35

Z

g

J

I

I

U

i

W

M

m

g

I

g

M

i

!

D

I

m

i

